Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free: https://www.ghostery.com/fr/products/

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site: http://www.youronlinechoices.com/fr/controler-ses-cookies/, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Realytics
Google Analytics
Spoteffects
Optimizely

Targeted advertising cookies

DoubleClick
Mediarithmics

The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at cil-dpo@inra.fr or by post at:

INRA
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Logo Principal

Home page

Zone de texte éditable et éditée et rééditée

Topic 4 - Sustainable management of varietal resistances: from the identification of agroecological solutions to the assessment of multi-scale deployment strategies

flag-fr

This axis integrates the knowledge obtained in the three previous topics (123) to identify and assess the efficacy and the sustainability of different resistance deployment strategies. This means answering questions such as: "How an effective level of functional diversity can be reintroduced into crops at field and landscape scales?" and "How different types of resistance can be combined to make multi-scale deployment strategies more sustainable?" Our ambition is to evaluate the relevance of different management principles, themselves declined into different concrete agroecological solutions. We would like to assess by statistical inference and modelling the efficacy and the sustainability of resistance deployment taking into account molecular specificities associated with resistance genes and other environmental constraints.

The modelling work of Julien Papaïx during his PhD thesis had made it possible to assess the theoretical influence of wheat variety deployment strategies in a landscape, whose heterogeneity, fragmentation and connectivity could be optimized to reduce the intensity of epidemics and slow down the breakdown of resistance genes. Model validation and implementation now require a better knowledge of multi-year epidemiological processes but also of demogenetic and phenotypic data that must be available at the landscape scale over relatively long periods of time. This type of data has been acquired over the past 20 years on stripe and leaf rust (see Topic 1) but are not adapted for landscape-scale studies. The objective is now to design and manage surveys and collections of rust populations at the landscape scale in some relevant reference areas.