En savoir plus

Notre utilisation de cookies

« Cookies » désigne un ensemble d’informations déposées dans le terminal de l’utilisateur lorsque celui-ci navigue sur un site web. Il s’agit d’un fichier contenant notamment un identifiant sous forme de numéro, le nom du serveur qui l’a déposé et éventuellement une date d’expiration. Grâce aux cookies, des informations sur votre visite, notamment votre langue de prédilection et d'autres paramètres, sont enregistrées sur le site web. Cela peut faciliter votre visite suivante sur ce site et renforcer l'utilité de ce dernier pour vous.

Afin d’améliorer votre expérience, nous utilisons des cookies pour conserver certaines informations de connexion et fournir une navigation sûre, collecter des statistiques en vue d’optimiser les fonctionnalités du site. Afin de voir précisément tous les cookies que nous utilisons, nous vous invitons à télécharger « Ghostery », une extension gratuite pour navigateurs permettant de les détecter et, dans certains cas, de les bloquer.

Ghostery est disponible gratuitement à cette adresse : https://www.ghostery.com/fr/products/

Vous pouvez également consulter le site de la CNIL afin d’apprendre à paramétrer votre navigateur pour contrôler les dépôts de cookies sur votre terminal.

S’agissant des cookies publicitaires déposés par des tiers, vous pouvez également vous connecter au site http://www.youronlinechoices.com/fr/controler-ses-cookies/, proposé par les professionnels de la publicité digitale regroupés au sein de l’association européenne EDAA (European Digital Advertising Alliance). Vous pourrez ainsi refuser ou accepter les cookies utilisés par les adhérents de l'EDAA.

Il est par ailleurs possible de s’opposer à certains cookies tiers directement auprès des éditeurs :

Catégorie de cookie

Moyens de désactivation

Cookies analytiques et de performance

Realytics
Google Analytics
Spoteffects
Optimizely

Cookies de ciblage ou publicitaires

DoubleClick
Mediarithmics

Les différents types de cookies pouvant être utilisés sur nos sites internet sont les suivants :

Cookies obligatoires

Cookies fonctionnels

Cookies sociaux et publicitaires

Ces cookies sont nécessaires au bon fonctionnement du site, ils ne peuvent pas être désactivés. Ils nous sont utiles pour vous fournir une connexion sécuritaire et assurer la disponibilité a minima de notre site internet.

Ces cookies nous permettent d’analyser l’utilisation du site afin de pouvoir en mesurer et en améliorer la performance. Ils nous permettent par exemple de conserver vos informations de connexion et d’afficher de façon plus cohérente les différents modules de notre site.

Ces cookies sont utilisés par des agences de publicité (par exemple Google) et par des réseaux sociaux (par exemple LinkedIn et Facebook) et autorisent notamment le partage des pages sur les réseaux sociaux, la publication de commentaires, la diffusion (sur notre site ou non) de publicités adaptées à vos centres d’intérêt.

Sur nos CMS EZPublish, il s’agit des cookies sessions CAS et PHP et du cookie New Relic pour le monitoring (IP, délais de réponse).

Ces cookies sont supprimés à la fin de la session (déconnexion ou fermeture du navigateur)

Sur nos CMS EZPublish, il s’agit du cookie XiTi pour la mesure d’audience. La société AT Internet est notre sous-traitant et conserve les informations (IP, date et heure de connexion, durée de connexion, pages consultées) 6 mois.

Sur nos CMS EZPublish, il n’y a pas de cookie de ce type.

Pour obtenir plus d’informations concernant les cookies que nous utilisons, vous pouvez vous adresser au Déléguée Informatique et Libertés de l’INRA par email à cil-dpo@inra.fr ou par courrier à :

INRA
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan cedex - France

Dernière mise à jour : Mai 2018

Menu Logo Principal AgroParisTech

ECOSYS Bienvenue

UMR ECOSYS - Ecologie fonctionnelle et écotoxicologie des agroécosystèmes

RL1. Exposure assessment

  • Fate of contaminants. For mineral or organic contaminants, we studied the mechanisms and/or the processes of degradation or trapping by the soil constituents (de Santiago-Martín et al., 2015; Spadini et al., 2018). Total contents were measured either to spatialize the contamination (in the field, following land management or anthropic pressure) or to track changes with time after some inputs (in field or ex-situ in microcosms), and linked with effects to specific soil organisms (Nélieu et al., 2016). We were also interested in the management of these contaminants, and thus looking for avoiding their dispersal thanks to the substitution of one product by another (EDIFIS project) or by favoring their biodegradation or limiting their bioavailability (GESIPOL or PIEGEACHLOR projects) or during the phase of waste treatment (Ardo et al., 2015; TRICLOSAN project). In all cases, these studies require adapted analytical methods: analytical developments thus constitute an essential part of the researches (Goulas et a.l, 2017). One project (CICESOL project) was specifically dedicated to the exploitation of the 90 years old long-term bare fallow ’42-plots’ experiment of INRA-Versailles and its historical soil archive laid on a Luvisol, representative of large areas of north-western Europe. Parcels without or with continuous application of a series of N, P, and K-fertilizers and basic and organic amendments were studied to assess changes in their biogeochemical and physicochemical properties. In the reference soils without fertilizers, cumulative inputs of atmospheric deposition of metal contaminants (sum of Pb+Zn+Cr+Co) could be budgeted and reached 200 kg/ha in 85 years. Under fertilization, we assessed that some soil processes can be activated like acidification and mineral dissolution as well as lixiviation of trace metals (Cd, Ni, Co, Mn) under ammonium fertilizers, or clay leaching and mobility of associated trace elements (Tl, Sc, Ni, Cr, As) in sodium and/or potassium based fertilizer.
    Biological contaminants, such as cyanotoxins (microcystin-LR), have also been considered in the context of soil irrigation with contaminated water, transfer to crops, and ecotoxicological impact (Corbel et al., 2014; 2015). It has been shown that a high risk of toxin leaching from the soil toward groundwater occurred. Exposure in soil to realistic environmental microcystins concentrations affected seed germination, depending plant species. It was also highlighted disturbances in soil bacteria functioning through soil nitrification process.
  • Relationship between speciation of the contaminants and the effects on soil organisms. We specifically studied this relationship using the concept of bioavailability as described in the ISO 17402 norm, while focusing on the role of the organic matter as both ligand for contaminants and food source for organisms. 
    A conceptual model of causal relationship was elaborated, and validation was looked for with data produced from microcosms studies with earthworms exposed to a gradient of in situ contamination. Causal relationship between availability of contaminants in the soil and uptake of contaminants by earthworms (called environmental bioavailability) was found dependent of the type of contaminant (Beaumelle et al., 2015) (Fig. 19). Subcellular distribution of Cd in earthworm was found dependent of the total content of soil Cd, while subcellular distribution of Pb was only related to the total internal Pb content in the worm. No causal relationship could be found between  soil metal availability and the glycogen contents in earthworms as indicator of toxicological bioavailability, but rather we found that soil texture and extractable metals with CaCl2 were the only two parameters explaining the internal lipid and protein earthworm contents (Beaumelle et al., 2014). Subcellular fractions of metals in earthworms were found better biomarkers than the corresponding total internal contents (Beaumelle et al., 2017). Finally, a structural equation model was used to confirm that a causal relationship can be established when dealing with Cd and Pb but not with Zn, and to assess whether some indicators are robust or not (Beaumelle et al., 2016).
  • Bioavailability and mixture of contaminants. A main work was done through an ANR project (CEMABS project) with the conjunction of Soil and Ecotox teams of ECOSYS, where the importance of taking into account the bioavailability of antibiotic compounds was assessed when dealing with the effects on the soil microbial functioning. The context of this study was the recycling of urban or agricultural organic wastes. Microbial activities and PICT (Pollution Inducing Community Tolerance) were used as powerful tools assessing the relation between the nature of the organic inputs and the related fluxes of contaminants, and the effects on the nutrient recycling soil functions (Goulas et al., 2014; David et al., 2016; Crouzet et al., 2015, 2016.). Furthermore, the works initiated on the effects of the mixture of contaminants, either mixtures of pesticides (IMPEC project) or organo-mineral mixtures (antibiotic – metal in the CEMABS project) allowed identifying microbial activity descriptors like nitrification as particularly sensitive for microbial communities and their functions. Coupling bioassay-based experiments to toxicological contaminant interaction models (i.e. concentration attention) allowed us to assess the genericity of the mixture models for the environmental risk assessment of contaminant effects on soil microbial functions (Chatillon et al., 2017). This mixture approach allows to identify contaminant interaction, such as synergistic or antagonism effects, but concerning mainly short-term effects on potential microbial activities when using bioassay based conditions.